Due in class Wednesday, December 6.

- 1. Alan Turing was interested in modeling computations rather than accepting/rejecting inputs. His TMs had no Accept state. Given an input they either halted (which is good) or ran forever. So let $\mathcal{L}_{halt} = \{(M,w) \mid M \text{ is a TM that halts (whether or not in a final state) on input w}$ If you prefer you can write this as $\{m111w \mid m \text{ is the encoding of a TM that halts on input w}\}$. Show that \mathcal{L}_{halt} is recursively enumerable but not recursive.
- Describe informally (you don't need to draw it) a multi-tape TM that enumerates the perfect squares in the sense that it starts with blank tapes and prints on its first tape 0¹10⁴10⁹10¹⁶10²⁵...
- 3. We showed that if a language and its complement are both RE then both are recursive. Suppose we have 3 recursively enumerable languages that are disjoint (no string is in two of them) and whose union is the set of all strings. Show that all three must be recursive.
- 4. Suppose \mathcal{L}_1 and \mathcal{L}_2 are both recursively enumerable. Is the concatenation $\mathcal{L}_1\mathcal{L}_2$ RE? Why or why not?
- 5. We know \mathcal{L}_{ne} is recursively enumerable but not recursive. Let \mathcal{L}_{2ne} be {m | m encodes TM that accepts at least 2 strings} Rice's Theorem says \mathcal{L}_{2ne} is not recursive. Is it recursively enumerable? Why or why not?
- 6. Let \mathcal{L}_{inf} be {m | m encodes a TM that accepts infinitely many strings}. Is \mathcal{L}_{inf} RE?